3.2.53 \(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx\) [153]

Optimal. Leaf size=147 \[ \frac {32 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {20 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {20 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {32 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {4 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^2 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \]

[Out]

32/15*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+20/21*a^2*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+32/45*a^2*cos(d*x+c)^(3/
2)*sin(d*x+c)/d+4/7*a^2*cos(d*x+c)^(5/2)*sin(d*x+c)/d+2/9*a^2*cos(d*x+c)^(7/2)*sin(d*x+c)/d+20/21*a^2*sin(d*x+
c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2836, 2715, 2719, 2720} \begin {gather*} \frac {20 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {32 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}+\frac {4 a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {32 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{45 d}+\frac {20 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^2,x]

[Out]

(32*a^2*EllipticE[(c + d*x)/2, 2])/(15*d) + (20*a^2*EllipticF[(c + d*x)/2, 2])/(21*d) + (20*a^2*Sqrt[Cos[c + d
*x]]*Sin[c + d*x])/(21*d) + (32*a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(45*d) + (4*a^2*Cos[c + d*x]^(5/2)*Sin[c
+ d*x])/(7*d) + (2*a^2*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(9*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx &=\int \left (a^2 \cos ^{\frac {5}{2}}(c+d x)+2 a^2 \cos ^{\frac {7}{2}}(c+d x)+a^2 \cos ^{\frac {9}{2}}(c+d x)\right ) \, dx\\ &=a^2 \int \cos ^{\frac {5}{2}}(c+d x) \, dx+a^2 \int \cos ^{\frac {9}{2}}(c+d x) \, dx+\left (2 a^2\right ) \int \cos ^{\frac {7}{2}}(c+d x) \, dx\\ &=\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {4 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^2 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {1}{5} \left (3 a^2\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{9} \left (7 a^2\right ) \int \cos ^{\frac {5}{2}}(c+d x) \, dx+\frac {1}{7} \left (10 a^2\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {6 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {20 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {32 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {4 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^2 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}+\frac {1}{15} \left (7 a^2\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{21} \left (10 a^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {32 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {20 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {20 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {32 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {4 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^2 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.15, size = 532, normalized size = 3.62 \begin {gather*} \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {8 \cot (c)}{15 d}+\frac {23 \cos (d x) \sin (c)}{84 d}+\frac {37 \cos (2 d x) \sin (2 c)}{360 d}+\frac {\cos (3 d x) \sin (3 c)}{28 d}+\frac {\cos (4 d x) \sin (4 c)}{144 d}+\frac {23 \cos (c) \sin (d x)}{84 d}+\frac {37 \cos (2 c) \sin (2 d x)}{360 d}+\frac {\cos (3 c) \sin (3 d x)}{28 d}+\frac {\cos (4 c) \sin (4 d x)}{144 d}\right )-\frac {5 (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\text {ArcTan}(\cot (c))) \sqrt {1-\sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {1+\sin (d x-\text {ArcTan}(\cot (c)))}}{21 d \sqrt {1+\cot ^2(c)}}-\frac {4 (a+a \cos (c+d x))^2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\text {ArcTan}(\tan (c)))\right ) \sin (d x+\text {ArcTan}(\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\text {ArcTan}(\tan (c)))} \sqrt {1+\cos (d x+\text {ArcTan}(\tan (c)))} \sqrt {\cos (c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\text {ArcTan}(\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{15 d} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^2,x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*((-8*Cot[c])/(15*d) + (23*Cos[d*x]*Sin[c])/(84*
d) + (37*Cos[2*d*x]*Sin[2*c])/(360*d) + (Cos[3*d*x]*Sin[3*c])/(28*d) + (Cos[4*d*x]*Sin[4*c])/(144*d) + (23*Cos
[c]*Sin[d*x])/(84*d) + (37*Cos[2*c]*Sin[2*d*x])/(360*d) + (Cos[3*c]*Sin[3*d*x])/(28*d) + (Cos[4*c]*Sin[4*d*x])
/(144*d)) - (5*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]
*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*
Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - (4*(a + a*
Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]
^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]
*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*T
an[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/S
qrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(15*d)

________________________________________________________________________________________

Maple [A]
time = 0.15, size = 260, normalized size = 1.77

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (560 \left (\cos ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-960 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+608 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-96 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-205 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+75 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-168 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+93 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{315 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(260\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-4/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(560*cos(1/2*d*x+1/2*c)^11-960*cos(1/2*d*x+
1/2*c)^9+608*cos(1/2*d*x+1/2*c)^7-96*cos(1/2*d*x+1/2*c)^5-205*cos(1/2*d*x+1/2*c)^3+75*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-168*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+93*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 175, normalized size = 1.19 \begin {gather*} -\frac {2 \, {\left (75 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 75 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 168 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 168 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (35 \, a^{2} \cos \left (d x + c\right )^{3} + 90 \, a^{2} \cos \left (d x + c\right )^{2} + 112 \, a^{2} \cos \left (d x + c\right ) + 150 \, a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

-2/315*(75*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 75*I*sqrt(2)*a^2*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 168*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInver
se(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 168*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0
, cos(d*x + c) - I*sin(d*x + c))) - (35*a^2*cos(d*x + c)^3 + 90*a^2*cos(d*x + c)^2 + 112*a^2*cos(d*x + c) + 15
0*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(a+a*cos(d*x+c))**2,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3064 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [B]
time = 0.77, size = 136, normalized size = 0.93 \begin {gather*} -\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,a^2\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^2,x)

[Out]

- (2*a^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1
/2)) - (4*a^2*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^
2)^(1/2)) - (2*a^2*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(11*d*(sin(c
 + d*x)^2)^(1/2))

________________________________________________________________________________________